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Overview

This deck of slides goes through the asymptotic behavior of the ordinary
least squares estimator.

The corresponding chapter in Hansen is 7.
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Model and assumptions (H Assumption 7.2)

Parameter of interest is β in

Y = X ′β + e, E(Xe) = 0,

that is,
β = E(XX ′)−1E(XY ).

Assumptions:

1. Random sample: (Yi, Xi) for i = 1, . . . , n on (Y, X).

2. Finite fourth-order moments: E(|Y |4) < ∞, and

3. E(∥X∥4) < ∞.

4. Full rank: E(XX ′) is positive definite.

3/ 14



Consistency (H Theorem 7.1)

The OLS estimator is

β̂ =
(

1
n

n∑
i=1

XiX
′
i

)−1(
1
n

n∑
i=1

XiYi

)
= Q̂−1

XXQ̂XY

while
β = E(XX ′)−1E(XY ) = Q−1

XXQXY .

By the LLN, as n → ∞,

Q̂XX →
p

QXX , Q̂XY →
p

QXY .

Because QXX is invertible, by the continuous-mapping theorem, as
n → ∞,

Q̂−1
XXQ̂XY →

p
Q−1

XXQXY

that is,
β̂ →

p
β.
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Limit distribution (H Theorem 7.3)

Note that

β̂ = Q̂−1
XX

(
1
n

n∑
i=1

XiYi

)

= Q̂−1
XX

(
1
n

n∑
i=1

Xi[X ′
iβ + ei]

)

= Q̂−1
XX

(
Q̂XXβ + 1

n

n∑
i=1

Xiei

)

= β + Q̂−1
XX

(
1
n

n∑
i=1

Xiei

)
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That is,
√

n(β̂ − β) = Q̂−1
XX

1√
n

n∑
i=1

Xiei

Now,

E(Xe) = 0, E(∥Xe∥2) ≤ E(∥X∥4)1/2 E(|e|4)1/2 < ∞

so that, by the CLT,

1√
n

n∑
i=1

Xiei →
d

N(0, Ω), Ω = E(XX ′e2).

Therefore, by Slutzky’s theorem,
√

n(β̂ − β) →
d

N(0, Vβ), Vβ = Q−1
XXΩ Q−1

XX

because Q̂XX →
p

QXX , as n → ∞.
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Homoskedasticity

Vβ is the asymptotic variance of β̂.

If
E(e2|X = x) = σ2

then

Ω = E(XX ′e2) = E[XX ′E(e2|X)] = E(XX ′) σ2 = QXX σ2.

Consequently, in this case,

Vβ = σ2 Q−1
XX .
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Variance estimation (H Theorem 7.6)

An estimator of
Vβ = Q−1

XXΩ Q−1
XX

is
V̂β = Q̂−1

XXΩ̂ Q̂−1
XX

for

Ω̂ = 1
n

n∑
i=1

XiX
′
i ê

2
i

where êi = Yi − X ′
iβ̂ are the least-squares residuals.

This is V̂ HC0
β in Hansen.
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Consider the case where k = 1 for simplicity, then

Ω̂ = 1
n

n∑
i=1

X2
i ê2

i = 1
n

n∑
i=1

X2
i

(
Yi − Xiβ̂

)2

= 1
n

n∑
i=1

X2
i

(
ei − Xi(β̂ − β)

)2

= 1
n

n∑
i=1

X2
i e2

i − 2
n

n∑
i=1

X2
i

(
Xiei(β̂ − β)

)
+ 1

n

n∑
i=1

X2
i

(
Xi(β̂ − β)

)2

= 1
n

n∑
i=1

X2
i e2

i − 2
(

1
n

n∑
i=1

X3
i ei

)
(β̂ − β) +

(
1
n

n∑
i=1

X4
i

)
(β̂ − β)2

= (Ω + op(1)) + Op(1) op(1) + Op(1) op(1)
→
p

Ω

as n → ∞
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We have
1
n

n∑
i=1

X2
i e2

i →
p
E(X2e2) = Ω.

We also know that
β̂ − β = op(1).

and that
1
n

n∑
i=1

X4
i →

p
E(X4) < ∞,

and
1
n

n∑
i=1

X3
i ei →

p
E(X3e) < ∞

because

E(|X3e|) ≤ E(|X2||Xe|) ≤ E(|X2|2)1/2 E(|Xe|2)1/2 = E(X4)1/2 Ω1/2 < ∞.
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Linear contrasts (H7.10)

Suppose we are interested in the vector of linear contrasts

θ = R′β

for some matrix k × q (non-random) matrix R.

An estimator of θ is
θ̂ = R′β̂.

Consistency is immediate.

By linearity of the transformation,
√

n(θ̂ − θ) →
d

N(0, Vθ), Vθ = R′VβR,

as n → ∞.
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Nonlinear transformations (H7.10)

Now consider nonlinear transformations

θ = r(β)

for r : Rk → Rq.

Then
θ̂ = r(β̂) →

p
θ

as n → ∞ provided that r is continuous at β.

Further, if r is continuously differentiable with Jacobian R′ = R′(β),
then √

n(θ̂ − θ) →
d

N(0, Vθ), Vθ = R′VβR,

as n → ∞.

12/ 14



Standardized statistics: t-statistic and Wald statistic (H7.12 and
H.16)

Let R̂ = R(β̂).

Easy to see that
V̂θ = R̂′V̂βR̂ →

p
Vθ

as n → ∞.

Then, provided that V̂θ is invertible (wpa1),
√

n V̂
−1/2

θ (θ̂ − θ) →
d

N(0, Iq). (1)

The diagonal entries of the matrix

V̂
1/2

θ /
√

n

are the standard errors of the entries of θ̂. They are a measure of
precision.
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We will often work with

n (θ̂ − θ)′V̂ −1
θ (θ̂ − θ) →

d
χ2

q,

which is the inner product of (1).

This is known as a Wald statistic.

When r : Rk → R then θ is a scalar and the left-hand side of (1) is
known as a t-statistic.
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